SIE575
Download as PDF
SIE575 - Bayesian Machine Learning and Optimal Learning I
Course Description
We consider optimization problems whose objective functions are unknown and hence have to be learned from data. Such problems are pervasive in science and industry, e.g., when
- designing prototypes in engineering,
- automated tuning of machine learning algorithms, e.g., in deep learning,
- optimizing control policies in robotics,
- developing pharmaceutical drugs, and many more.
Bayesian optimization methods are popular in the machine learning community due to their high sample-efficiency and have become a key technique in the area of \"automatic machine learning\". We introduce a general framework in which to understand and formulate such optimal learning problems, and provide a survey of problems, methods, and theoretical results.
- designing prototypes in engineering,
- automated tuning of machine learning algorithms, e.g., in deep learning,
- optimizing control policies in robotics,
- developing pharmaceutical drugs, and many more.
Bayesian optimization methods are popular in the machine learning community due to their high sample-efficiency and have become a key technique in the area of \"automatic machine learning\". We introduce a general framework in which to understand and formulate such optimal learning problems, and provide a survey of problems, methods, and theoretical results.
Min Units
3
Max Units
3
Repeatable for Credit
No
Grading Basis
GRD - Regular Grades A, B, C, D, E
Career
Graduate
Course Attributes
GIDP - STATD (Statistics and Data Science)
May be convened with
Name
Lecture
Workload Hours
3
Optional Component
No
Typically Offered Main Campus
Fall
Typically Offered Distance Campus
Fall
Typically Offered UA Online Campus
Fall