SIE533

Download as PDF

SIE533 - Fundamentals of Data Science for Engineers

Systems & Industrial Engr Graduate UA - UA General

Course Description

This course will provide senior undergraduate and graduate students from a diverse engineering disciplines with fundamental concepts, principles and tools to extract and generalize knowledge from data. Students will acquire an integrated set of skills spanning data processing, statistics and machine learning, along with a good understanding of the synthesis of these skills and their applications to solving problem. The course is composed of a systematic introduction of the fundamental topics of data science study, including: (1) principles of data processing and representation, (2) theoretical basis and advances in data science, (3) modeling and algorithms, and (4) evaluation mechanisms. The emphasis in the treatment of these topics will be given to the breadth, rather than the depth. Real-world engineering problems and data will be used as examples to illustrate and demonstrate the advantages and disadvantages of different algorithms and compare their effectiveness as well as efficiency, and help students to understand and identify the circumstances under which the algorithms are most appropriate.

Min Units

3

Max Units

3

Repeatable for Credit

No

Grading Basis

GRD - Regular Grades A, B, C, D, E

Career

Graduate

Course Attributes

GIDP - STATD (Statistics and Data Science)

May be convened with

SIE433

Name

Lecture

Workload Hours

3

Optional Component

No

Typically Offered Main Campus

Fall

Typically Offered Distance Campus

Fall

Typically Offered UA Online Campus

Fall